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ABSTRACT

In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for I.T.U.
TRIGA Mark-II reactor was employed. Mixed convection is considered in modelling to
enhance the capability of the computer code. After the continuity, conservation of energy,
momentum balance equations for coolant in axial direction and the heat-conduction equation
for the fuel rod in radial direction had been written, they were discretized by using the control
volume approach to obtain a set of algebraic equations. By the aid of the discretized continuity
and momentum balance equations, a pressure and a pressure-correction equations were derived.
Then, two different FORTRAN programs called TRIGATH (TRIGA Thermal-Hydraulics)
and TRIGATH-R (TRIGATH Revised) have been developed to solve this set of algebraic
equations by using SIMPLE and SIMPLER algorithms respectively. As a result, the
temperature distributions of the coolant and the fuel rods as well as the velocity and pressure
distributions of the coolant have been estimated for both transient and steady state regimes from
both algorithms. Their results, which are in good agreement, are compared to the results of the
computer code TRISTAN.

1. INTRODUCTION

The LT.U. TRIGA Mark-II reactor has been operated in two modes: steady-state and pulsing.
Reactor power levels in steady-state mode range up to and include 250 kW. Maximum power in
transient pulsing mode reaches up to approximately 1200 MW [1,2]. The reactor core assembly
shown in Fig. 1 is located near the bottom of a cylindrical aluminum tank surrounded by a reinforced
concrete shield structure. The reactor is equipped with a central thimble for conducting experiments
or irradiating small samples in the core, a pneumatic transfer system for production of short-lived
radioisotopes. The biological shield is pierced by three beam tubes and the thermal column for

irradiation purposes.

The core consists of ninety vertical cylindrical elements located in five rings around the central
thimble. Sixty-nine of them are fuel elements, which consist of four components: (1) fuel-moderator
meat, (2) graphite reflectors, (3) cladding, (4) end fixtures. Fuel elements are spaced in the core by
means of aluminum top and bottom grid plates. The bottom grid plate has spaces to permit coolant
passage through the plate. The safety analysis of L T.U. TRIGA Mark-II reactor requires a thermal-
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hydraulic model of the reactor to determine the thermal-hydraulic parameters in both steady-state and

transient mode operations.
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Figure 1. 1.T.U. TRIGA Mark-II reactor arrangement [1,2].

2. THE THERMAL-HYDRAULIC MODEL

The reactor has been operated with natural convective cooling by pool water, which is also
cooled and purified in external coolant circuits by forced convection. In this study, therefore,
this characteristic cooling system of the tank water leads to consider “mixed convection”,
which is based on both natural and forced convection, in a “subchannel analysis™, in which the
properties of coolant are represented by single arca-averaged values for ecach subchannel. In
general, the subchannel analysis method uses either the coolant-centered or the rod-centered
subchannel approaches. The traditional approach for rod bundle analysis has been coolant-
centered subchannels. However, “the rod-centered subchannel” approach shown in Fig. 2 is
considered in this study since it provides a regular, well-arranged geometry. In this way, the
thermal-hydraulic parameters are easily calculated in these rod-centered subchannels [3,4].
Each subchannel in I.T.U. TRIGA Mark-II reactor core is called by the same name of the rod it
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contains in this analysis. The flow area of any subchannel is the z-directional cross-sectional
area filled by the fluid. The hydraulic diameter of a subchannel is the equivalent diameter of the
flow area in the subchannel. The fuel rod has an outer radius of 1.8669 cm and its active fuel

meat section has a height of 38.1 cm.

GRAPHITE ELEMENT
@ CoNTROL ROD

Figure 2. The rod-centered subchannels on I.T.U. TRIGA Mark-II reactor core.

The “assumptions” of this thermal-hydraulic model are as follows [3,4]:

1-There is no mass, momentum or energy transfer between the subchannels in 7~ and 6 -directions.

2-The heat transfer from the fuel to the top and bottom graphite reflectors in z-direction is
ignored.

3- Each property of the coolant has a uniform distribution in #- and 6 -directions in a subchannel.

4- Energy is produced homogeneously on the horizontal cross-section of a fuel.

5- The reactor works either in transient or in steady-state mode.

6- The core inlet temperature and velocity do not change in time.

7- The density p, dynamic viscosity W, specific heat ¢, and conductivity & of the coolant are

functions of temperature and pressure. These parameters and the Prandtl number Pr have

been calculated by means of the computer program H20 [5].

8- The thermal conductivity & 7 and the specific heat ¢ ¢ of the fuel and the thermal conductivity

k.; of the clad are temperature-dependent. They are calculated from the following correlations

[6]:
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ky = — (WmK), )
1-9.6884%x1074 T,

cr=857+16 (7 -25) (kJ/kg K). (3)

9- The constant values of ¢,; =460 (kl/kg K), p y=6000 (kg/m*) and p.;=7865 (kg/m’) are

considered for the fuel and clad.

10- The free convection heat transfer coefficient 4 is calculated from the following correlations,

which are given for the outside surface of a vertical cylinder [6-9]:

a) Laminar flow

h=059kGrPr)°® /H  for 10* <GrPr<10°, (4)

Turbulent flow

h=0.10GrPr)/ 3/ H for 10° <GrPr<10'? (5)

where H is the length. Grashoff number is also defined as

2
Gr=88" (0 _yu ©)
0

3. GOVERNING DIFFERENTIAL EQUATIONS

In this study, the aim is to constitute a “one-dimensional” thermal-hydraulic model having all
dependent variables “area-averaged”. Three-dimensional continuity, momentum balance and
conservation of energy equations in cylindrical coordinates for the coolant have been written easily
by the aid of [10-14]. As the detailed information is given in [3], after integrating these equations
over the cross-sectional flow area perpendicular to the z- (flow) direction, the arca-averaged one-
dimensional continuity, momentum balance and conservation of energy equations for the coolant in
cylindrical coordinates are obtained as follows:

One-Dimensional Continuity Equation

op , 9pv;)_

0, 7
ot oz ()
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One-Dimensional Conservation of Energy Equation
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One-Dimensional Momentum Balance Equation

s F

2
a([—)vz ) A i M Az—s = _a—p_d Az—s + uaiAz—s - 1P - pr(T - TO )Az—_w (9)
dr dz dz Jz2

where v, is the z-directional velocity component of the coolant, p; is the dynamic

pressure, T is the shear stress and P is the perimeter. Shear stress can be written as
‘c:O.Sva|vZ|f (10)
while f is the friction factor, which is given [11] for laminar flow and round tube as

16
Re””

P (1)

where Rep,, is the Reynolds number considering the hydraulic diameter. In the derivation of the

momentum equation, the total pressure that expresses the absolute pressure is divided into three parts:
atmospheric, dynamic and hydraustatic pressures. Since the z-directional change in the atmospheric
pressure is zero, the temm related to it is dropped. It is assumed that the density of the fluid in the
buoyancy (last) term of Eq. (9) is variable, while the density in the other terms are constant. This

assumption is known as the Boussinesq Approach.
4. GRID STRUCTURE

Grid for the continuity, the conservation of energy, the pressure and the pressure correction equations
is shown in Fig. 3a and staggered grid for the momentum balance equation is shown in Fig. 3b
[3,4,15]. In Fig. 3a, shaded area is a control volume denoted by point P. Points # and £ also denote
the neighbor control volumes while w and e denote the interfaces between the two neighbor control

volumes.

|
| e

Figure 3. Grid (a) for the continuity, the conservation of energy, the pressure and the
pressure correction equations and, staggered grid (b) for the momentum

balance equation.
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To derive a set of discretized algebraic equations with the help of the “control volume
approach”, the differential equations given by Egs. (7)«(9) are integrated over the control
volumes shown in Fig. 3. During the integration process, a “fully implicit hybrid scheme” is used,
so that the values of temperature, velocity and pressure at time 7+ Af are assumed to prevail over
the entire time step [3,4,15,16].

5. DISCRETIZATION EQUATIONS FOR THE CONSERVATION Of ENERGY
EQUATION

After integrating Eq. (8) over the control volume shown in Fig. 3a, the final form of the discretized

conservation of energy equation for hybrid scheme is obtained [3,4] as

aITan=a£TE +aVTVTW +b7 (12)
where
]
ag;:H—FeT,O +p! =T, (13)
e
Fy
aly =‘F‘{,0 +Dpl 1= 0l (14)
"V
0
0 p%(Az)p (4,
(a;@) =PP( )Zf z s)P’ (15)
0
b = (8T o (a)p (4, )p + b [ 70 (16)

af =af +afy +{ah | ~(s7), (a2)p (4., )p. a7

The name “hybrid scheme” is the indicative of a combination of the central difference and

upwind schemes. An automatic selection of scheme is provided by the symbol of ||A,B , which

has a meaning of “choose the largest of A and B, given in Eqs. (13) and (14). The value of the
Peclet number is compared to choose either the central difference or the upwind scheme in the

hybrid scheme to employ. The criteria is that the hybrid scheme applies the upwind method while

|P|>2 (18)

and it applies the central difference method while

|P| <2 (19)
where P is a Peclet number, which is defined by
T
F
= (20)
DT
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6. DISCRETIZATION EQUATIONS FOR THE MOMENTUM BALANCE
EQUATION
After integrating Eq. (9) over the control volume shown in Fig. 3b, the discretized

momentum balance equation for the hybrid scheme is obtained [3,4] as

a: (Vz )e = a:e (Vz )ee + a:)v (Vz )w +b" + (pP —PE )(Az—s )e (21)
where
ay, =||- Fg.0| +Dg 1-%5—5,0, (22)
E
ay, =||Fp.0| + Dp 1-%5—1’,0, (23)
P
0 (p0),62), (4,s)
o f B (24)
0
b =(s2), &), (o), +lapf 02,00 (25)
al =al,+al+lal [ =(spa,) (26)
while
(), = peB(r, - 1), 27)
1
57) = ),

7. THE PRESSURE-CORRECTION EQUATION

The momentum balance equation can be solved only when the pressure field is given or somehow

estimated. For this aim, a pressure-correction equation to give the error p’ on the guessed
pressure field p* for obtaining the correct pressure field p is derived [3,4]. During the derivation,
the correct pressure p is proposed to be obtained as

p=p +p (29)
where p’ is called the pressure-correction. A velocity-correction formula can also be obtained as

(v,), =5 ), +delpp - P (30)

from the discretized momentum balance equation. One can substitute the velocity-correction
formula into the discretized continuity equation and rearrange it to obtain the pressure-

correction equation as
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aﬁ p’p=aé7 p’E+a,f;, Py +b¥ 3D

where
ag = (pdAz—s )e > (32)
a[/};/ = (pdAZ—S )w/’ (33)
ab =al +al (34)

0 - * *
b? =¥ (AZ)P (A, )p + [(pvz )w - (pvz )e ](Az—s )p =0. (35)
8. DERIVATION Of THE PRESSURE EQUATION

An equation to obtain the pressure field can be derived as follows [15,16]. The momentum

balance equation, Eq.(21), in discretized form is rewritten as

a’v,, +alv, +b¥
L +d,(pp - PE) (36)

d, = . 37
Now, we define a pseudovelocity ¥, by

D W
V, =—"7".

(38)
e a:

As it is shown, V, is composed of the neighbor velocities v,; and contains no pressure.

Thus, Eq. (36) becomes

Ve =V, +d,(pp - pE ). (39)
Similarly,
vw=‘9w+dw(pW _pP) (40)

can be written. Employing the fully implicit method, the integration of Eq. (7)
over the control volume shown in Fig. 3a gives the discretized continuity equation

as

0
(p_aLt)P(AZ)P (4, )p + [(pvz )e —(pv, )w](Az—s )P -0. 4

One can substitute Egs. (39) and (40), into Eq. (41) and rearrange it to obtain the pressure

equation in discretized form as
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ab pp =af pg +al) py +b°

(42)
where
afj = (pdAz—s )e > (43)
a[/‘; = (pdAz—s )w > (44)
ab =al +ap, (43)
0_
b? = (pA—tp)P(AZ)P (Az-s)p + (0. ) = 07), [, )p=0. (46)

9. NUMERICAL SOLUTION PROCEDURE: SIMPLE AND SIMPLER ALGORITHMS

The procedure used in the calculation of the flow field together with the pressure and
temperature fields has been given the name SIMPLE, which stands for Semi-Implicit Method
for Pressure-Linked Equation [15,16]. The important operations for the execution of this
algorithm are summarized in the flow chart shown in Fig. 4a. To improve the rate of
convergence of SIMPLE algorithm, a revised version has also been worked out. It is called
SIMPLER which stands for SIMPLE Revised [15,16]. It consists of solving the pressure
equation to obtain the pressure field and solving the pressure-correction equation only to

correct the velocities. The operations for the execution of this algorithm are shown in the flow
chart in Fig. 4b.

Guess a pressure field p*

Solve the momentum balance|
equation to obtain v*

v

Solve the p' equation
'

Calculate the pressure p
by adding p' to p*.

Calculate the coefficients for the
ressure equation, and solve it to
obtain pra

Calculate v by using the
velocity-cortection formula:

VT i+ 4 (Pp-pp)

Solve the energy conservation|
equation to obtain T

/
/Isa
/converged™_ o [Treatthe cortected pressure p
{ “solution )—+[as anew guessed pressure p'
\\omined 7/ osp

4

(a) (b)
Figure 4. (a) The SIMPLE and (b) the SIMPLER algorithms.
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The set of boundary conditions used in this model is that velocity and temperature are specified
at the inflow boundary whereas pressure is specified at the outflow boundary.

The solution of the discretization equations for one-dimensional situation is obtained by
the standard “Gauss-elimination method”, which is sometimes called the “Thomas
Algorithm™ or the “TDMA” (TriDiagonal Matrix Algorithm).

10. THE HEAT-CONDUCTION EQUATION FOR THE FUEL RODS

One-dimensional heat-conduction equation for the fuel rods in cylindrical coordinates can

be written [17] as

M:li kra_T +ql”. (47)
ot ¥ or ar

One can obtain a discretization equation for the heat-conduction equation [3,4,15] as

abTp =al T +ali Ty +b7 (48)

where subscripts S and N denote the neighbor control volumes in radial direction and

T rokg 49
as = (Sr)s 5 (49)
T _ Fuky
ay = (Sr)n , (50)
To_(pcV)P rs t1y,
(aP) Y ( 3 ](A’)Ps D
=R b o
b =l e+ b ] 6] ) (25 . 53

11. COMPUTATIONAL RESULTS

After the development of the thermal-hydraulic model, two different FORTRAN programs
called TRIGATH (TRIGA Thermal-Hydraulics) [3,4] and TRIGATH-R (TRIGATH
Revised) that employ SIMPLE and SIMPLER algorithms respectively have been coded. A
cosine linear power density variation in z-direction is considered in all runs of both computer
codes. In the sample runs of the codes to obtain the results given below, coolant temperature

and velocity are assumed to be 32.5°C and 0.1201 m/s respectively as both the initial and the

inlet boundary conditions. Dynamic pressure is assumed to be 1x10™7 Pa at the outlet of

reactor core. The fuel element thermal powers of different fuel rods that correspond to a
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maximum steady reactor power of 250 kW, grid structure in radial direction, some
thermophysical properties of the fuel element Bl and some thermophysical parameters of the
coolant used in the thermal-hydraulic model of I.T.U. TRIGA Mark-II reactor are presented in
[3,4]. Similar results are obtained from the run of both TRIGATH and TRIGATH-R codes.

Axial directional variation of some thermal-hydraulic parameters in subchannel Bl at a
maximum steady power of 250 kW of .T.U. TRIGA Mark-II reactor are presented in Table 1.

Table 1. Axial directional variation of some thermal-hydraulic parameters of the coolant and
fuel rod in subchannel B1 for L. T.U. TRIGA Mark-II reactor.

Zone  z,, Zout Absolute  Hydraustatic Velocity Temperature T, Tt ouater T conter

pressure pressure

(cm)  (cm) (m/s) “C) ‘C) “C) ‘0

(Pa) (Pa)

15 1651 19,05 151326,85 50001,85 12,074 46,50 109,15 111,88 144,58
14 1397 16,51 151573.66 5024977 12,072 4593 12120 124,58 165,29
13 1143 13,97 15182053 50497,70 12,068 4521 13140 13535 183,07
12 889 1143 15206747 5074562 12,064 4436 13975 144,17 197,80
11 635 889 15231449 50993,55 12,059 4340 14621 151,00 209,33
10 3581 635 152561.60 5124148 12,054 4235 150,72 155,78 217,53
9 127 3,81 15280880 5148940 12,048 4124 15325 15847 22229
8 -127 127 153056,11 51737,33 12,043 40,08 153,74 159,02 223,35
7 381 -127 15330351 5198525 12,037 38092 152,17 157.40 221,26
6 -635 -381 153551,02 52233,18 12,032 37,76 14853 153,60 21541
5 889 -635 15379863 52481,10 12,027 36,65 14283 147,63 206,05
4 1143 -8,89 154046,33 5272903 12,023 35,60 135,07 139,51 19325
313,97 -1143 154294,12 5297695 12,019 34,64 12530 12927 177,13
2 1651 -13,97 15454199 5322488 12,015 33,79 113,57 116,97 157,82

1 19,05 -16,51 154789,93 53472,80 12,012 33,07 9988 102,64 135,47
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Variations of the steady-state axial fuel temperature distributions at the fuel rod center in different

rings at a maximum steady power of 250 kW of reactor are plotted in Fig. 5.

Variations of the steady state radial temperature distribution in the fuel rods of different

rings at a maximum steady power of 250 kW of reactor are also plotted in Fig. 6.

240
B1
220 —

- C1
200 —

180 — D1

160 —
E1

Temperature (°C)

140 — F1

120 —

100 —

80 T T T T T T T 1
-0.2 -01 0.0 0.1 0.2
Axial Position (m)

Figure 5. Variations of the steady state axial fuel temperature distributions at the fuel rod

center in different rings.
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Figure 6. Variations of the steady state radial temperature distribution in the fuel rods of different
rings.

The data for the coolant of .T.U. TRIGA Mark-II reactor obtained from the run of TRISTAN

are presented in Table 2 to compare the results of this study and TRISTAN [18,19]. The data,

which is the estimations for maximum temperatures at the outer surface of clad, at the
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outer surface and in the center of fuel in radial direction obtained from the run of
TRISTAN for I.T.U. TRIGA Mark-II reactor, is given in the second-fourth columns of Table
3 [18,19]. The data given in the last column of Table 3 is the result of measurements for the
maximum temperatures nearly in the center of fuels at different rings of L T.U. TRIGA Mark-II

reactor [ 19], which are given for a comparison.

Table 2. Some of the thermal-hydraulic parameters obtained from the run of TRISTAN for
the coolant of I.T.U. TRIGA Mark-II reactor [18,19].

Zone Height Temperature  Hydraustatic Density Velocity

Pressure Drop

(cm) °C) (Pa) (kg/m?) (cm/s)
15 5236 46.43 245.73 0.9886 12,07
14 49.82 4576 245.57 0.9899 12,07
13 4728 44.95 245.49 0.9902 12,06
12 4474 4401 245.13 0.9906 12,06
1 4220 42.97 245.22 0.9910 12,05
10 39,66 4184 245,38 0.9914 12,05
9 37.12 40,67 245.59 0.9919 12,04
8 34,58 3947 245.84 0.9923 12,04
7 32,04 38.26 246.12 0.9928 12,03
6 2950 37.09 246.40 0.9932 12,03
5 26.96 35.97 246.69 0.9937 12,02
4 2442 34.92 24731 0.9940 12,02
3 2188 33.98 247.64 0.9944 12,01
2 1933 33.17 24787 0.9947 12,01

1 16,80 32,50 248,07 0,9950 12,01
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Table 3. Maximum temperatures obtained from the run of TRISTAN [18,19] and measured
experimentally in the fuel rods in different rings of . T.U. TRIGA Mark-II reactor [19].

Position T T; T max T max, exp
(°C) O (°C) °C)
Bl 133 141 256 244
Cl 126 134 230 219
D1 123 127 213 204
El 113 118 183 176
Fl 88 91 147 141

12. CONCLUSIONS

In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for [.T.U.
TRIGA Mark-II reactor has been employed. The temperature, pressure and velocity
distributions for the coolant in axial direction together with the temperature distribution of
the fuel rods in radial direction for I.T.U. TRIGA Mark-II reactor have been estimated for
both transient and steady states by the computer code TRIGATH-R developed during this
study. The data used in TRIGATH-R are the same, in majority, as those of TRISTAN.
Although TRIGATH-R considers rod-centered subchannels while TRISTAN considers
triangular subchannels, their estimations for the hydraustatic pressure drops, velocity, and
temperature gradients given in Table 1 are in good agreement with those of TRISTAN given
in Table 2 [18,19]. The convergence of the code TRIGATH-R is also perfect.
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