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ABSTRACT

In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for I.T.U. 
TRIGA Mark-II reactor was employed. Mixed convection is considered in modelling to 
enhance the capability of the computer code. After the continuity, conservation of energy, 
momentum balance equations for coolant in axial direction and the heat-conduction equation 
for the fuel rod in radial direction had been written, they were discretized by using the control 
volume approach to obtain a set of algebraic equations. By the aid of the discretized continuity 
and momentum balance equations, a pressure and a pressure-correction equations were derived. 
Then, two different FORTRAN programs called TRIGATH (TRIGA Thermal-Hydraulics) 
and TRIGATH-R (TRIGATH Revised) have been developed to solve this set of algebraic 
equations by using SIMPLE and SIMPLER algorithms respectively. As a result, the 
temperature distributions of the coolant and the fuel rods as well as the velocity and pressure 
distributions of the coolant have been estimated for both transient and steady state regimes from 
both algorithms. Their results, which are in good agreement, are compared to the results of the 
computer code TRISTAN.

1. INTRODUCTION

The I.T.U. TRIGA Mark-II reactor has been operated in two modes: steady-state and pulsing. 
Reactor power levels in steady-state mode range up to and include 250 kW. Maximum power in 
transient pulsing mode reaches up to approximately 1200 MW [1,2]. The reactor core assembly 
shown in Fig. 1 is located near the bottom of a cylindrical aluminum tank surrounded by a reinforced 
concrete shield structure. The reactor is equipped with a central thimble for conducting experiments 
or irradiating small samples in the core, a pneumatic transfer system for production of short-lived 
radioisotopes. The biological shield is pierced by three beam tubes and the thermal column for 
irradiation purposes.

The core consists of ninety vertical cylindrical elements located in five rings around the central 
thimble. Sixty-nine of them are fuel elements, which consist of four components: (1) fuel-moderator 
meat, (2) graphite reflectors, (3) cladding, (4) end fixtures. Fuel elements are spaced in the core by 
means of aluminum top and bottom grid plates. The bottom grid plate has spaces to permit coolant 
passage through the plate. The safety analysis of I.T.U. TRIGA Mark-II reactor requires a thermal-
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hydraulic model of the reactor to determine the thermal-hydraulic parameters in both steady-state and 
transient mode operations.

Figure 1. I.T.U. TRIGA Mark-II reactor arrangement [1,2].

2. THE THERMAL-HYDRAULIC MODEL

The reactor has been operated with natural convective cooling by pool water, which is also 
cooled and purified in external coolant circuits by forced convection. In this study, therefore, 
this characteristic cooling system of the tank water leads to consider “mixed convection”, 
which is based on both natural and forced convection, in a “subchannel analysis”, in which the 
properties of coolant are represented by single area-averaged values for each subchannel. In 
general, the subchannel analysis method uses either the coolant-centered or the rod-centered 
subchannel approaches. The traditional approach for rod bundle analysis has been coolant- 
centered subchannels. However, “the rod-centered subchannel” approach shown in Fig. 2 is 
considered in this study since it provides a regular, well-arranged geometry. In this way, the 
thermal-hydraulic parameters are easily calculated in these rod-centered subchannels [3,4]. 
Each subchannel in I.T.U. TRIGA Mark-II reactor core is called by the same name of the rod it
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contains in this analysis. The flow area of any subchannel is the z-directional cross-sectional 
area filled by the fluid. The hydraulic diameter of a subchannel is the equivalent diameter of the 
flow area in the subchannel. The fuel rod has an outer radius of 1.8669 cm and its active fuel 
meat section has a height of 38.1 cm.

Figure 2. The rod-centered subchannels on I.T.U. TRIGA Mark-II reactor core.

The “assumptions” of this thermal-hydraulic model are as follows [3,4]:
1- There is no mass, momentum or energy transfer between the subchannels in r- and 6 -directions.
2- The heat transfer from the fuel to the top and bottom graphite reflectors in z-direction is 

ignored.
3- Each property of the coolant has a uniform distribution in r- and 6 -directions in a subchannel.
4- Energy is produced homogeneously on the horizontal cross-section of a fuel.
5- The reactor works either in transient or in steady-state mode.
6- The core inlet temperature and velocity do not change in time.
7- The density p , dynamic viscosity q , specific heat cp and conductivity k  of the coolant are

functions of temperature and pressure. These parameters and the Prandtl number Pr have 
been calculated by means of the computer program H2O [5].

8- The thermal conductivity k f  and the specific heat Cf of the fuel and the thermal conductivity

k ci of the clad are temperature-dependent. They are calculated from the following correlations 

[6]:
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0.17585
k f  = 1 -  4.15 X 10“4 Tf

k cl =

cf  =

13.4634

1 -  9.6884 X10-4 Tcl 

857 +1.6 (Tf -  25)

(W/m K),

(W/m K ), 

(kJ/kg K).

(1)

(2)

(3)

9- The constant values of ccı =460 (kJ/kg K), p f  =6000 (kg/m3) and p ci =7865 (kg/m3) are 

considered for the fuel and clad.

10- The free convection heat transfer coefficient h is calculated from the following correlations, 
which are given for the outside surface of a vertical cylinder [6-9]:

a) Laminar flow

h = 0.59k(G rPr)0 25 / H  for 104 < GrPr < 109 , (4)

Turbulent flow

h = 0.10(GrPr)1773/ H  for 109 < GrPr < 1013 (5)

where H  is the length. Grashoff number is also defined as

Gr = (Tcl -  T )H  3 . (6)
^  2

3. GOVERNING DIFFERENTIAL EQUATIONS

In this study, the aim is to constitute a “one-dimensional” thermal-hydraulic model having all 
dependent variables “area-averaged”. Three-dimensional continuity, momentum balance and 
conservation of energy equations in cylindrical coordinates for the coolant have been written easily 
by the aid of [10-14]. As the detailed information is given in [3], after integrating these equations 
over the cross-sectional flow area perpendicular to the z- (flow) direction, the area-averaged one­
dimensional continuity, momentum balance and conservation of energy equations for the coolant in 
cylindrical coordinates are obtained as follows:

One-Dimensional Continuity Equation

dP + d(p^z ) = 0 , (7)
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One-Dimensional Conservation of Energy Equation

d(pT) d(pvzr ) _ k ( d 2t  ̂
dt dz dz z

(8)

d 2 v
n~ A z_ s 2 z s -TP -pgP(T -  To ) (9)

One-Dimensional Momentum Balance Equation

d(pv z ) A , d(pv z v z ) A _ _ d P ± A  , MAz-s ' Az-s Az_s ' Mdt dz dz dz

where vz is the z-directional velocity component of the coolant, Pd is the dynamic

pressure, T is the shear stress and P is the perimeter. Shear stress can be written as

T  =  0-5Pvz\vz \ f  (10)

while f  is the friction factor, which is given [11] for laminar flow and round tube as

ııı

+
c c

__16
Re

where Re^H is the Reynolds number considering the hydraulic diameter. In the derivation of the

momentum equation, the total pressure that expresses the absolute pressure is divided into three parts: 
atmospheric, dynamic and hydraustatic pressures. Since the z-directional change in the atmospheric 
pressure is zero, the term related to it is dropped. It is assumed that the density o f the fluid in the 
buoyancy (last) term o f Eq. (9) is variable, while the density in the other terms are constant. This 
assumption is known as the Boussinesq Approach.

4. GRID STRUCTURE

Grid for the continuity, the conservation of energy, the pressure and the pressure correction equations 
is shown in Fig. 3a and staggered grid for the momentum balance equation is shown in Fig. 3b 
[3,4,15]. In Fig. 3a, shaded area is a control volume denoted by point P. Points W and E also denote 
the neighbor control volumes while w and e denote the interfaces between the two neighbor control 
volumes.

Figure 3. Grid (a) for the continuity, the conservation of energy, the pressure and the 
pressure correction equations and, staggered grid (b) for the momentum 
balance equation.
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To derive a set of discretized algebraic equations with the help of the “control volume 
approach”, the differential equations given by Eqs. (7)-(9) are integrated over the control 
volumes shown in Fig. 3. During the integration process, a “fully implicit hybrid scheme” is used, 
so that the values of temperature, velocity and pressure at time t + At are assumed to prevail over 
the entire time step [3,4,15,16].

5. DISCRETIZATION EQUATIONS FOR THE CONSERVATION Of ENERGY 
EQUATION

After integrating Eq. (8) over the control volume shown in Fig. 3a, the final form of the discretized 
conservation o f energy equation for hybrid scheme is obtained [3,4] as

apTp = apTp + aJpT^ + bT

where

T
aE =

T
aW

-  F T 01 e + D. 1-
FeT

F T 0 + D

2D.

F■*- -u

T

2DT

(aP P  =
0 p P  (Az )p  (Az-s \P

At

bT = ( T )p  (Az)p  (Az-s )p  + (aTP )0Tp 0 ,

aP = aE + aW + ( P p -  pp (Az )p (Az-s )p • (17)

0

1 0

(12)

(13)

(14)

(15)

(16)

The name “hybrid scheme” is the indicative of a combination of the central difference and 

upwind schemes. An automatic selection of scheme is provided by the symbol of ||A,5||, which

has a meaning of “choose the largest o f  A and B”, given in Eqs. (13) and (14). The value of the 
Peclet number is compared to choose either the central difference or the upwind scheme in the 
hybrid scheme to employ. The criteria is that the hybrid scheme applies the upwind method while

|P | >2 (18)

and it applies the central difference method while

|P | <2 (19)

where p  is a Peclet number, which is defined by

F T
P = ~ y  . (20)DT
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6. DISCRETIZATION EQUATIONS FOR THE MOMENTUM BALANCE 
EQUATION

A fter integrating Eq. (9) over the control volume shown in Fig. 3b, the discretized 
momentum balance equation for the hybrid scheme is obtained [3,4] as

a V
e = a Vee (vz )ee + aW (vz )w + b  + (PP -  PE ) Az-s \

where

(21)

aee = -  FE + DE - 1 f e ,0
2 DE

avw = | |Fp  ,0  + Dp 

(  )0 = (?)  )e (Sz)e (Az-s ),

- 1
Fp

,0
2 DP

At

b'' )e (S z) (Az-s )e + ( P f  (vz )0° ,

(ae ]’ - (S vpAfr i.ae = aee + aw +

while

(SV )e = P§Pfie -  T) ), 

(SV̂ )e = - 1  ( V z\f )e •

(22)

(23)

(24)

(25)

(26)

(27)

(28)

7. THE PRESSURE-CORRECTION EQUATION

The momentum balance equation can be solved only when the pressure field is given or somehow
t

estimated. For this aim, a pressure-correction equation to give the error p  on the guessed
*

pressure field p  for obtaining the correct pressure fieldp  is derived [3,4]. During the derivation, 

the correct pressure p  is proposed to be obtained as

p  = p  + p  (29)
t

where p  is called the pressure-correction. A velocity-correction formula can also be obtained as

(vz )e = (v* )e + d e {p'p -  p E ) (30)

from the discretized momentum balance equation. One can substitute the velocity-correction 
formula into the discretized continuity equation and rearrange it to obtain the pressure- 
correction equation as
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ap P'p  = a e  P'e  +aW PW +bP (31)

where

aE = ( d A z-s )e ,

aW = ( d A z-s )w,

a P ■■ah, + a W ’

bP = ^  ÂP ( A ) P  (Az-s )P  +  [pV * L  -  (pvz )e ](Az-s ]P = 0.

(32)

(33)

(34)

(35)

8. DERIVATION Of THE PRESSURE EQUATION

An equation to obtain the pressure field can be derived as follows [15,16]. The momentum 
balance equation, Eq.(21), in discretized form is rewritten as

a 'ee vee + O X  + b  + d e (  -  Pe  )
ae

(36)

where

d e =
(Az-s )e (37)

Now, we define a pseudovelocity ve by

a

anb vnb + b
v

a
(38)

As it is shown, ve is composed of the neighbor velocities vnb and contains no pressure. 

Thus, Eq. (36) becomes

ve = ve + de (PP -  PE ) . (39)
Sim ilarly,

vw = vw + d w P w -  PP ) (40)
can be w ritten. Employing the fully  im plicit method, the in tegration o f Eq. (7) 
over the control volume shown in Fig. 3a gives the d iscretized  continuity equation  
as

^  p  ^  (Az )P (Az-s )p + [ v z [e -  ( v z )w ](Az-s )p = 0 • (4i)

One can substitute Eqs. (39) and (40), into Eq. (41) and rearrange it to obtain the pressure 
equation in discretized form as
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where

a E = {pd A z- s )g , 

aW = ( d A z-s )w ,
P P P

aP = aE + aW ,

bP = ^  Afp p  (AZ)P (Az-s )P + [ v z )w -  ( v z )e ] (Az-s )P = 0.

aP PP = aE PE + aW PW + bP (42)

(43)

(44)

(45)

(46)

9. NUMERICAL SOLUTION PROCEDURE: SIMPLE AND SIMPLER ALGORITHMS

The procedure used in the calculation of the flow field together with the pressure and 
temperature fields has been given the name SIMPLE, which stands for Semi-Implicit Method 
for Pressure-Linked Equation [15,16]. The important operations for the execution of this 
algorithm are summarized in the flow chart shown in Fig. 4a. To improve the rate of 
convergence of SIMPLE algorithm, a revised version has also been worked out. It is called 
SIMPLER which stands for SIMPLE Revised [15,16]. It consists of solving the pressure 
equation to obtain the pressure field and solving the pressure-correction equation only to 
correct the velocities. The operations for the execution of this algorithm are shown in the flow 
chart in Fig. 4b.

(a) (b)

Figure 4. (a) The SIMPLE and (b) the SIMPLER algorithms.

89



The set of boundary conditions used in this model is that velocity and temperature are specified 
at the inflow boundary whereas pressure is specified at the outflow boundary.
The solution of the discretization equations for one-dimensional situation is obtained by 
the standard “Gauss-elimination method”, which is sometimes called the “Thomas 
Algorithm” or the “TDMA” (TriDiagonal Matrix Algorithm).

10. THE HEAT-CONDUCTION EQUATION FOR THE FUEL RODS

One-dimensional heat-conduction equation for the fuel rods in cylindrical coordinates can 
be written [17] as

d ( c vT ) 1 a
kr dT

dr + qdt r dr V /
One can obtain a discretization equation for the heat-conduction equation [3,4,15] as 

aTpTp = aTs Ts + aTN TN + bT

where subscripts S and N denote the neighbor control volumes in radial direction and

T rs k s
aS

(6r)s ’

T rn kn
aN

(  )  =

( r  )n ’

0 (Pcv )P
At

(

rs + rn ( A  \P ’

bT = (  )  [  ̂  j(Ar )p + (  )  Tp 0 ,

ap  = a s  + aN + (aP f - ^ ) P ^  W  )p  .

2

(47)

(48)

(49)

(50)

(51)

(52)

(53)

11. COMPUTATIONAL RESULTS

After the development of the thermal-hydraulic model, two different FORTRAN programs 
called TRIGATH (TRIGA Thermal-Hydraulics) [3,4] and TRIGATH-R (TRIGATH 
Revised) that employ SIMPLE and SIMPLER algorithms respectively have been coded. A 
cosine linear power density variation in z-direction is considered in all runs of both computer 
codes. In the sample runs of the codes to obtain the results given below, coolant temperature

and velocity are assumed to be 32.5 oC and 0.1201 m/s respectively as both the initial and the
_7

inlet boundary conditions. Dynamic pressure is assumed to be 1X10 Pa at the outlet of
reactor core. The fuel element thermal powers of different fuel rods that correspond to a
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maximum steady reactor power of 250 kW, grid structure in radial direction, some 
thermophysical properties of the fuel element B 1 and some thermophysical parameters of the 
coolant used in the thermal-hydraulic model of I.T.U. TRIGA Mark-II reactor are presented in 
[3,4]. Similar results are obtained from the run of both TRIGATH and TRIGATH-R codes.

Axial directional variation of some thermal-hydraulic parameters in subchannel B1 at a 
maximum steady power of 250 kW of I.T.U. TRIGA Mark-II reactor are presented in Table 1.

Table 1. Axial directional variation of some thermal-hydraulic parameters of the coolant and 
fuel rod in subchannel B1 for I.T.U. TRIGA Mark-II reactor.

Zone %in

(cm)

%out

(cm)

Absolute
pressure

(Pa)

Hydraustatic
pressure

(Pa)

Velocity Temperature 

(m/s) (oC)

Tci

(oC)

Tf outer

(oC)

Tf center

(oC)

15 16,51 19,05 151326,85 50001,85 12,074 46,50 109,15 111,88 144,58

14 13,97 16,51 151573,66 50249,77 12,072 45,93 121,20 124,58 165,29

13 11,43 13,97 151820,53 50497,70 12,068 45,21 131,40 135,35 183,07

12 8,89 11,43 152067,47 50745,62 12,064 44,36 139,75 144,17 197,80

11 6,35 8,89 152314,49 50993,55 12,059 43,40 146,21 151,00 209,33

10 3,81 6,35 152561,60 51241,48 12,054 42,35 150,72 155,78 217,53

9 1,27 3,81 152808,80 51489,40 12,048 41,24 153,25 158,47 222,29

8 -1,27 1,27 153056,11 51737,33 12,043 40,08 153,74 159,02 223,55

7 -3,81 -1,27 153303,51 51985,25 12,037 38,92 152,17 157,40 221,26

6 -6,35 -3,81 153551,02 52233,18 12,032 37,76 148,53 153,60 215,41

5 -8,89 -6,35 153798,63 52481,10 12,027 36,65 142,83 147,63 206,05

4 11,43 -8,89 154046,33 52729,03 12,023 35,60 135,07 139,51 193,25

3 13,97 -11,43 154294,12 52976,95 12,019 34,64 125,30 129,27 177,13

2 16,51 -13,97 154541,99 53224,88 12,015 33,79 113,57 116,97 157,82

1 19,05 -16,51 154789,93 53472,80 12,012 33,07 99,88 102,64 135,47
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Variations of the steady-state axial fuel temperature distributions at the fuel rod center in different 
rings at a maximum steady power of 250 kW of reactor are plotted in Fig. 5.

Variations of the steady state radial temperature distribution in the fuel rods of different 
rings at a maximum steady power of 250 kW of reactor are also plotted in Fig. 6.

Figure 5. Variations of the steady state axial fuel temperature distributions at the fuel rod 
center in different rings.

Figure 6. Variations of the steady state radial temperature distribution in the fuel rods of different 
rings.

The data for the coolant of I.T.U. TRIGA Mark-II reactor obtained from the run of TRISTAN 
are presented in Table 2 to compare the results of this study and TRISTAN [18,19]. The data, 
which is the estimations for maximum temperatures at the outer surface of clad, at the

92



outer surface and in the center of fuel in radial direction obtained from the run of 
TRISTAN for I.T.U. TRIGA Mark-II reactor, is given in the second-fourth columns of Table 
3 [18,19]. The data given in the last column of Table 3 is the result of measurements for the 
maximum temperatures nearly in the center of fuels at different rings of I.T.U. TRIGA Mark-II 
reactor [19], which are given for a comparison.

Table 2. Some of the thermal-hydraulic parameters obtained from the run of TRISTAN for 
the coolant o f I.T.U. TRIGA Mark-II reactor [18,19].

Zone Height Temperature Hydraustatic 
Pressure Drop

Density Velocity

(cm) (oC) (Pa) (kg/m3) (cm/s)

15 52,36 46,43 245,73 0,9886 12,07

14 49,82 45,76 245,57 0,9899 12,07

13 47,28 44,95 245,49 0,9902 12,06

12 44,74 44,01 245,13 0,9906 12,06

11 42,20 42,97 245,22 0,9910 12,05

10 39,66 41,84 245,38 0,9914 12,05

9 37,12 40,67 245,59 0,9919 12,04

8 34,58 39,47 245,84 0,9923 12,04

7 32,04 38,26 246,12 0,9928 12,03

6 29,50 37,09 246,40 0,9932 12,03

5 26,96 35,97 246,69 0,9937 12,02

4 24,42 34,92 247,31 0,9940 12,02

3 21,88 33,98 247,64 0,9944 12,01

2 19,33 33,17 247,87 0,9947 12,01

1 16,80 32,50 248,07 0,9950 12,01
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Table 3. Maximum temperatures obtained from the run of TRISTAN [18,19] and measured
experimentally in the fuel rods in different rings of I.T.U. TRIGA Mark-II reactor [19].

Position Tc i

(oC)
Tf

(oC)
Tf  m ax

(oC)
Tf  m a x ,exp

(oC)
B1 133 141 256 244
C1 126 134 230 219
D1 123 127 213 204
E1 113 118 183 176
F1 88 91 147 141

12. CONCLUSIONS

In this study, a transient, one-dimensional thermal-hydraulic subchannel analysis for I.T.U. 
TRIGA Mark-II reactor has been employed. The temperature, pressure and velocity 
distributions for the coolant in axial direction together with the temperature distribution of 
the fuel rods in radial direction for I.T.U. TRIGA Mark-II reactor have been estimated for 
both transient and steady states by the computer code TRIGATH-R developed during this 
study. The data used in TRIGATH-R are the same, in majority, as those of TRISTAN. 
Although TRIGATH-R considers rod-centered subchannels while TRISTAN considers 
triangular subchannels, their estimations for the hydraustatic pressure drops, velocity, and 
temperature gradients given in Table 1 are in good agreement with those of TRISTAN given 
in Table 2 [18,19]. The convergence of the code TRIGATH-R is also perfect.
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