Metabolite profiling of four Tunisian Eucalyptus essential oils and assessment of their insecticidal and antifungal activities

Abstract
Aphids (Aphidoidea) and Fusarium spp. are widely recognized as destructive pests that cause significant damage to crops on a global scale. This study aimed to ascertain the chemical composition of essential oils (EOs) of four Tunisian Eucalyptus species and evaluate their toxicity against common aphids and phytopathogenic fungi. The EOs were obtained via hydrodistillation and subsequently analyzed using GC-MS. The chemical composition analysis revealed the presence of five distinct chemical classes in the EOs: monoterpene hydrocarbons (3.8–16.7 %), oxygenated monoterpenes (5.5–86.0 %), sesquiterpene hydrocarbons (0.2–2.2 %), oxygenated sesquiterpenes (4.2–86.7 %), and non-terpene derivatives (0.1–14.1 %).Hierarchical clustering analysis (HCA) and principal component analysis (PCA) of the Eucalyptus leaf EOs highlighted significant differences among them, leading to the generation of distinct HCA clades representing at least twelve major components. The statistical analysis clearly demonstrated a dose-response relationship, indicating the impact of the tested EOs on the growth of insects and fungal mycelium. The observed effects varied due to the variability in the chemical compositions of the EOs. Notably, among the EOs tested, Eucalyptus lesoufii Maiden exhibited particularly potent effects against the targeted insect and fungal species. This research contributes to the ongoing explo- ration of natural alternatives to chemical pesticides, providing further insights for potential in- dustrial applications. It underscores the versatility of these EOs and their potential as valuable candidates in strategies for pest and disease management.
Description
Keywords
Aphids, Fusarium, Essensial oil, Eucalyptus species and toxicity
Citation